MODEL ANSWER WINTER- 18 EXAMINATION

Subject Title: Digital Techniques

Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	Sub Q.N.	Answer	Marking Scheme
Q. 1		Attempt any FIVE of the following :	Total Marks 10
	a)	Write the radix of binary,octal,decimal and hexadecimal number system.	2M
	Ans:	$\text { Radix of: } \quad \text { Binary - } 2$ Octal-8 Decimal - 10 Hexadecimal - 16	$1 / 2 \mathrm{M}$ each
	b)	Draw the circuit diagram for AND and OR gates using diodes.	2M
	Ans:	Diode AND gate :Diode OR gate :	1 M each

c)	Write simple example of Boolean expression for SOP and POS.	2M
Ans:	SOP form: $\mathbf{Y}=\mathbf{A B}+\mathbf{B C}+\mathbf{A} \overline{\mathbf{C}}$ POS form: $\mathbf{Y}=(\mathbf{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})(\mathrm{A}+\overline{\mathbf{C}})$	1 M each (any proper example can be considered)
d)	State the necessity of multiplexer.	2M
Ans:	Necessity of Multiplexer: - It reduces the number of wires required to pass data from source to destination. - For minimizing the hardware circuit. - For simplifying logic design. - In most digital circuits, many signals or channels are to be transmitted, and then it becomes necessary to send the data on a single line simultaneously. - Reduces the cost as sending many signals separately is expensive and requires more wires to send.	2 M(any two proper points)
e)	Draw logic diagram of T flip-flop and give its truth table.	2M
Ans:	Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram:	1M (any one diagram) 1 M

b)	$\begin{aligned} & \hline \text { Convert }- \\ & (255)_{10}=(?)_{16}=(?)_{8} \\ & (157)_{10}=(?)_{\mathrm{BCD}}=(?)_{\text {Excess }} \end{aligned}$	4M
Ans:	(i) $\quad(255)_{10}=(\text { FF })_{16}=(377)_{8}$ $$ $\begin{array}{l\|ll} (255)_{10}= & (377)_{8} \\ \begin{array}{c\|l} 8 & 255 \\ 7 \end{array} & \begin{array}{l} 7 \\ 7 \end{array} \\ \hline 8 & 31 & \end{array}$ (ii) $\left.\quad(157)_{10}=(000101010111)_{B C D}=(010010001010)\right)_{\text {Excess } 3}$ $\begin{aligned} & (157)_{10}=(000101010111)_{\mathrm{BCD}} \\ & \begin{array}{l} \frac{1}{5} \quad \frac{7}{7} \\ (000101010111 \end{array} \\ & \\ & \begin{array}{l} 111111111 \\ 000101010111 \\ \hline 001100110011 \end{array} \end{aligned}$	1 M
c)	Draw the symbol, truth table and logic expression of any one universal logic gate. Write reason why it is called universal gate.	4M
Ans:	(Note: Any one universal gate has to be considered.) Universal Gates: NAND or NORSymbol: Truth table: Logic expression: $Y=\overline{A \cdot B} \quad Y=\overline{(A+B)}$ NAND and NOR gates are called as "Universal Gate" as it is possible to implement any Boolean expression using these gates.	$1 M$ $1 M$

c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4M
Ans:	(NOT GATE USING NOR GATE: $1 \mathbf{~ M}$) where, $\mathrm{X}=\mathrm{A}$ NOR A $\mathrm{x}=\bar{A}$ (AND GATE USING NOR GATE:1.5 MARKS) $\begin{aligned} & \overline{\mathrm{Q}=\overline{\mathrm{A}}+\overline{\mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}} \\ & \overline{=\overline{\mathrm{A}} \cdot \mathrm{~B}} \\ & =\mathbf{A} \cdot \mathrm{B} \end{aligned}$ (OR GATE USING NOR GATE:1.5 MARKS)	1M 1.5M 1.5 M
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4M
Ans:	(Diagram-2 M,Working-1M,Truth table-1M) Truth Table :- Truth Table	1M

Working :-

The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level " l ". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1", "logic 0", "no change" and "toggle".

Both the S and the R inputs of the previous SR bistable have now been replaced by two inputs called the J and Kinpyts, respectively after its inventor Jack Kilby. Then this equates to: $\mathrm{J}=\mathrm{S}$ and $\mathrm{K}=\mathrm{R}$.
The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-input NAND gates with the third input of each gate connected to the outputs at Q and Q . This cross coupling of the SR flip-flop allows the previously invalid condition of $\mathrm{S}=$ " 1 " and $\mathrm{R}=$ " 1 " state to be used to produce a "toggle action" as the two inputs are now interlocked.

If the circuit is now "SET" the J input is inhibited by the " 0 " status of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by the " 0 " status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both inputs J and K are equal to logic " 1 ", the JK flip flop toggles

Q. 4	A)	Attempt any THREE of the following:	12-Total Marks
	a)	Draw and explain working of 4 bit serial Input parallel Output shift register.	4M
	Ans:	(Diagram:2M,Explaination:2M) Diagram:-	
		Explaination :- If a logic " 1 " is connected to the DATA input pin of FFA then on the first clock pulse the output of FFA and therefore the resulting Q $_{A}$ will be set HIGH to logic " 1 " with all the other outputs still remaining LOW at logic " 0 ". Assume now that the DATA input pin of FFA has returned LOW again to logic " 0 " giving us one data pulse or 0-1-0. The second clock pulse will change the output of FFA to logic " 0 " and the output of FFBand Q_{B} HIGH to logic " 1 " as its input D has the logic " 1 " level on it from Q_{A}. The logic "l" has now moved or been "shifted" one place along the register to the right as it is now at Q_{A}. When the third clock pulse arrives this logic " 1 " value moves to the output of FFC (Q_{C}) and so on until the arrival of the fifth clock pulse which sets all the outputs Q_{A} to Q_{D} back again to logic level " 0 " because the input to FFA has remained constant at logic level " 0 ". The effect of each clock pulse is to shift the data contents of each stage one place to the right, and this is shown in the following table until the complete data value of $0-0-0-1$ is stored in the register. This data value can now be read directly from the outputs of Q_{A} to Q_{D}. Then the data has been converted from a serial data input signal to a parallel data output. The truth table and following waveforms show the propagation of the logic " 1 " through the register from left to right as follows. Basic Data Movement Through A Shift Register	2M

		-				ir com
	1	2	3	4	5	6
	A	B	$\overline{A B}$	\bar{A}	\bar{B}	$\bar{A}+\bar{B}$
	0	0	1	1	1	1
	0	1	1	1	0	1
	1	0	I	0	1	1
	1	1	0	0	0	0

Column $03=$ column 06
i.e. $\overline{A B}=\bar{A}+\bar{B}$

Hence proved
OR
ii) $\overline{\mathrm{A}+\mathrm{B}}=\bar{A} \cdot \bar{B}$

It states that complement of sum is equal to product of their complements.

1	2	3	4	5	6
A	B	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Column $03=$ column 06
$\therefore \overline{A+B}=\bar{A} \cdot \bar{B}$
Hence proved.
e) Design one digit BCD Adder using IC 7483

Ans: \quad (Diagram:4M)
(Note: Labeled combinational circuit can be drawn using universal gate

Q. 5		Attempt any TWO of the following :	$\begin{array}{\|l} \hline \text { Total Marks } \\ \mathbf{1 2} \end{array}$
	a)	Subtract using 2's compliment method $(35)_{10}-(5)_{10}$	6M
	Ans:	Step 1 - Obtain binary equivalent of (35) ${ }_{10} \&(5)_{10} \&$ then take 2 's compliment of (5) ${ }_{10}$. $\begin{gathered} \text { i.e. } \begin{array}{c} (35)_{10}=(100011)_{2} \\ (5)_{10}=(101)_{2} \end{array} \end{gathered}$ Step - 2 :	Each step 3 Marks

Resolution: The voltage input change necessary for a one bit change in the output is called resolution.
Conversion Time: The conversion time is the time required for conversion from an analog input voltage to the stable digital output

OR
Circuit Diagram:

2 Marks
Diagram

Explanation:

DAC= Digital to Analog converter
EOC= End of conversion
SAR $=$ Succesive approximation register
S/H= Sample and hold circuit
Vin= input voltage
Vref= reference voltage
The successive approximation Analog to Digital converter circuit typically consisting of four sub circuits-

1. A sample and hold circuit to acquire the input voltage Vin.
2. An analog voltage comparator that compares Vin to the output of internal

DAC and outputs the result of comparison to successive approximation register(SAR).
3. SAR sub circuits designed to supply an approximate digital code of Vin to the internal DAC.
4. An internal reference DAC that supplies the comparator with an analog voltage equivalent of digital code output of SAR for comparison with Vin.

The successive approximation register is initialized so that most significant bit (MSB) is equal to digital 1 . This code is fed into DAC which the supplies the analog equivalent of this digital code Vref/2 into the comparator circuit for the comparison with sampled input voltage. If this analog voltage exceeds Vin the comparator causes the SAR to reset the bit, otherwise a bit is left as 1 . Then the

2 Marks
Explanation

Q. 6		Attempt any TWO of the following:							Total Marks 12
a)		Design 4 bit Binary to Gray code converter.							6M
		Truth Table for 4 bit Binary to Gray code converter							2M for truth table $1 / 2 \mathrm{~m}$ for each output equation 2M for realization using gates
		Binary Input			Gray output				$1 / 2 \mathrm{~m}$ for each output equation 2M for realization using gates
		B3 ${ }^{\prime} \mathbf{B}_{2}$	B1	B 0	G3	G2	G1	G0	
		$\mathbf{0}$ 0	0	0	0	0	0	0	
		0	0	1	0	0	0	1	
		0	1	0	0	0	1	1	
		0 0	1	1	0	0	1	0	
		0 1	0	0	0	1	1	0	
		0 $\quad 1$	0	1	0	1	1	1	
		0 $\quad 1$	1	0	0	1	0	1	
		0 1	1	1	0	1	0	0	
		$\mathbf{1}$	0	0	1	1	0	0	
		$\mathbf{1}$	0	1	1	1	0	1	
		$\mathbf{1}$ 0	1	0	1	1	1	1	
		$\mathbf{1}$	1	1	1	1	1	0	
		1	0	0	1	0	1	0	
		1	0	1	1	0	1	1	
		1	1	0		0	0	1	
		1×1	1	1	1	0	0	0	
		K-MAP FOR G3:							
		00	0			0	0		
		01	0	0		0	0		
		11	1	1		1	1		
		10	1	1		1			
		$\mathrm{G} 3=\mathrm{B} 3$							

