

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Code:

22320

Subject Title: Digital Techniques

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

c)	Write simple example of Boolean expression for SOP and POS.	2M
Ans:	$\frac{\text{SOP form}}{\text{Y} = \text{AB} + \text{BC} + \text{AC}}$	1 M each (any prop example of be considered
	POS form:	considere
	$Y = (A + B) (B + C) (A + \overline{C})$	
d)	State the necessity of multiplexer.	2M
Ans:	Necessity of Multiplexer: It reduces the number of wires required to pass data from source to	2 M(any 1 proper
	destination.	points)
	 For minimizing the hardware circuit. For simplifying logic design. 	
	• In most digital circuits, many signals or channels are to be transmitted, and then it becomes necessary to send the data on a single line simultaneously.	
	• Reduces the cost as sending many signals separately is expensive and requires more wires to send.	
e)	Draw logic diagram of T flip-flop and give its truth table.	2M
Ans:	Note: Diagram Using logic gates with proper connection also can be <u>consider.</u> Logic Diagram:	1M (any diagram)
	$T \circ J \qquad \qquad$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 M
	OR Cr	

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

	Truth Table:			
	Input	Output Q _{n+1}	Operation Performed	
	0	Qn	No change	
	1	\bar{Q}_n	Toggle	
f)	Define modulus of a Mod-6 counter.	a counter. Write the n	umbers of flip flops required for	2M
Ans:	countes.	ounter is defined as nu of flip flops required f	mber of states/clock the counter for Mod-6 counter is 3.	Definition: 1 M No. of FF- 1M
g)	State function of pr	eset and clear in flip f	lop.	2M
Ans:	is uncertain i. • Hence, the fu	e. may be $Q = 1$ or $Q =$	et a flip flop i.e. Q = 1 and the	function (table is optional)
	Inputs CK Cr P	Output	Operation performed	
			Normal FLIP-FLOP Clear Preset	
		Y		
		Y		
		*		

OUR CENTERS:

b)	Convert –	4 M
	$(255)_{10} = (?)_{16} = (?)_8$ $(157)_{10} = (?)_{BCD} = (?)_{Excess3}$	
Ans:	$(157)_{10} - (15)_{\text{ECD}} - (15)_{\text{Excesss}}$ $(1) (255)_{10} = (FF)_{16} = (377)_8$	
	$(255)_{10} = (FF)_{16}$	1 M
	16 255 F (15) 🔨	
	15 F	
	$(255)_{10} = (377)_8$	
	8 255 7	1 M
	8 31 7	1 IVI
	3 3	
	(ii) $(157)_{10} = (000101010111)_{BCD} = (010010001010)_{Excess3}$	
	$(157)_{10} = (000101010111)_{BCD}$	
	$\begin{array}{c c} 1 & 5 & 7\\ 0001 & 0101 & 0111 \end{array}$	1 M
	0001 0101 0111	
	$(000101010111)_{BCD} = (010010001010)_{Excess3}$	
		1 M
	0001 0101 0111 + 0011 0011 0011	
	0100 1000 1010	
c)	Draw the symbol, truth table and logic expression of any one universal	4M
Ans:	logic gate. Write reason why it is called universal gate. (Note: Any one universal gate has to be considered.)	
A115.	Universal Gates: NAND or NORSymbol:	
		1 M
	Truth table:	
	ABYABY	1 M
	0 0 1 0 0 1	
	0 1 1 0 1 0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Logic expression:	1 1 7
	$Y = \overline{A \cdot B}$ $Y = (\overline{A + B})$	1 M
	I = (A + B)	
	NAND and NOR gates are called as "Universal Gate" as it is possible to	1 M

3	Attempt any THREE:			12-Total
				Marks
a)	Compare TTL and CM (i) Propagation (ii) Power Dissip (iii) Fan-out (iv) Basic gate	•	oasis of following:	4M
Ans:	<u>NOTE :- (Rel</u>	evant points of comparison-	M for each point)	1 Marks
	Parameter	CMOS	TTL	each point
	Propagation delay	70-105 nsec/more than TTL	10 nsec/Less than CMOS	
	Power Dissipation	Less 0.1 mW/Less than TTL	than CMOS	
	Fan-out	50/More than TTL	10/Less than CMOS	
	Basic gate	NAND/NOR	NAND	
b)	Describe the function of simplification and logic	of full Adder Circuit using c diagram.	its truth table, K-Map	4 M
		ational logic circuit that per bits A and B, and carry C f		1M
				1M

OUR CENTERS ·

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4 M
Ans:	omy.	
	(NOT GATE USING NOR GATE:1 M)	1M
	where, $X = A$ NOR A	
	$\mathbf{x} = \bar{A}$	
	(AND GATE USING NOR GATE:1.5 MARKS)	
		1.5M
	$\overline{Q}=\overline{A}+\overline{B}=\overline{A}+\overline{B}$	
	=A.B = A.B	
	(OR GATE USING NOR GATE:1.5 MARKS)	
		1.5 M
	$Q = \overline{A + B}$	
	$=\mathbf{A}+\mathbf{B}$	
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4 M
Ans:	(Diagram-2 M, Working-1M, Truth table-1M)	
		13.4
	Truth Table :-	1M
	Truth Table	
	J K CLK Q 0 0 1 Q ₀ (no change)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1 1 $\dagger \overline{Q}_0$ (toggles)	

OUR CENTERS ·

OUR CENTERS ·

	Clock Pulse No	QA	QB	QC	QD		
	0	0	0	0	0		
	1	1	0	0	0		
	2	0	1	0	0		
	3	0	0	1	0		
	4	0	0	0	1		
	5	0	0	0	0		
Draw 16:1 MU Diagram :-	JX tree using 4:1	MUX.		0	•		4M
10 11 12 13 14 15 16 17 18 19 110 111 111 112 113 114 115	4x1 MUX 51 S0 4x1 MUX 51 S0 4x1 MUX 51 S0 4x1 MUX 51 S0 4x1 MUX 51 S0			4X1 MUX 53 52		Output (f)	4M

c)	Calculate analog output of 4 bit DAC for digital input 1101. Assume V _{FS} = 5V.	4M
Ans:	(Formula- 1M, Correct problem solving- 3M)	
	<u>Formula :-</u>	1M
	$\overline{\mathbf{V}_{\mathbf{R}} = \mathbf{V}_{\mathbf{FS}}}$	
	$V_o = V_R [d_1 2^{-1} + d_2 2^{-2} + + d_n 2^{-n}]$	3M
	$= 5(1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4})$ = 5(0.5+O.25+0+0.0625) = 4.0625 Volts	
	OR	
	$V_{FS} = V_R \cdot \left(\frac{b3}{2} + \frac{b2}{4} + \frac{b1}{8} + \frac{b0}{16}\right)$	
	Note – (Since V_R is not given find V_R)	2 Marks fo V _R and 2
	Full Scale o/p mean	marks for Vo
	b3 b2 b1 b0 = 1111	
	$V_{FS} = 5V$	
	$5 = V_R \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right)$	
	$V_{\rm R} = 5.33$	
	For digital i/p b3 b2 b1 b0 = 1101	
	$V_0 = 5.33 \left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}\right)$	
	$\mathbf{V}_0 = \mathbf{4.33V}$	
d)	State De Morgan's theorem and prove any one.	4 M
Ans:	(Each State and proof using table- 2M each)	
		2M

						f their complime	ents.
	A I	2 B	3	4	5	6	_
			AB	Ā	\overline{B}	$\overline{A} + \overline{B}$	_
	0	0	1	1	0	1	_
	0	1 0	1	1 0		1	-
	1	1	0	0	0	0	_
	Column (i.e. $\overline{AB} =$ Hence pr		m 06				- 2M
	OR ii) A+B		ement of sum	is equal to r	wody of Af	their compleme	nte
				4	5	6	nus.
	Α	В	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	
	0	0	1	1	1	1	
	0	1 0	0		0	0	
	1	1	0		1 0	0	
		$\overline{03} = \operatorname{colum}_{\overline{B}}$ $\overline{A} \cdot \overline{B}$ roved.	nn 06				l
e)	Design on	e digit BC	Adder using	g IC 7483			
Ans:	(Diagram:	4M)					
			inational circ	uit can be dro	awn using	universal gate	4M

	Now add		11) ₂ 1000 1110	11	11101	1)2								
	discard the Therefore	ne carr	y ger	Carry nerate	ed				is in p	ositive	e form	, so wi	11	
b)	Design a	4 bit	svnel	ron	0115 00	untor	and d	lraw i	ts logi	c dian	ram			6M
Ans:	State Ta		synci		ous co	unter	anu t	11411	13 1051	c ulag	<u>,1 a111.</u>			0101
		Preser					state			lip flo				
			B 0	A 0	D+	C+	B+ 0	A+	TD	T _C	TB	T _A		
	0		0	1	0	0	1	1 0	0	0	0	1		
	0		1	0	0	0	1	1	0	0	0	1		2M-State table
	0	0	1	1	0	1	0	2	0	1	1	1		ubic
	0	1	0	0	0	1	0	1	0	0	0	1		
	0	1	0	1	0	1	1	0	9	0	1	1		
	0		1	0	0	1	1	1	0	0	0	1		
	0		1	1	1	0	0	0	1	1	1	1		
	1		0	0	1	0	0 1	1	0	0	0	1		
	1		1	0	1	0	1	1	0	0	0	1		
	1		1	1	1	1.	0	0	0	1	1	1		
	1	1	0	0	1	1	0	1	0	0	0	1		
	1	1	0	1	1	1	1	0	0	0	1	1		
	1	1	1	0	1	1	1	1	0	0	0	1		
	1	1	1	1	0	0	0	0	1	1	1	1		

Q.6		Attempt a	any TWO o	f the follow	ing:				Total Marks 12
a)	Design 4	bit Binary t	o Gray cod	e convert	er.			6M
А	ns:	Truth Tab	le for 4 bit I	Binary to Gra	ay code co	onverter			2M for truth table
			Binary In	put		Gra	y output		
		B 3 B	2 B 1	Bo	G3	G2	G 1	G0	1/2m for
		0 0	0	0	0	0	0	0	each output
		0 0	0	1	0	0	0	1	equation
		0 0	1	0	0	0	1	1	2M for
		0 0	1	1	0	0	1	0	realization
		0 1	0	0	0	1	1	0	using gates
		0 1	0	1	0	1	1	1	
		0 1	1	0	0	1	0	1	
		0 1	1	1	0	1	0	0	
		1 0	0	0	1	1	0	0	
		1 0	0	1	1	1	0	1	
		1 0	1	0	1	1	1	1	
		1 0	1	1	1	1	1	0	
		1 1	0	0	1	0	1	0	
		1 1	0	1	1	0	1	1	
		$ \begin{array}{c c} 1 & 1 \\ 1 & 1 \end{array} $	1	0	1	0	0	1	
		B1	80 ₀₀	- 01		'11	10		
		6362 00		0		0	o		
		01	O	D		0	0		
		11	1	1		1	1		
		10	1	1		1	1		
		G3=B3	L	l	I				

OUR CENTERS :

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

b)		Any three points) Non-volatile memory DRAM memory		6M
Ans:				
	Parameter	Volatile memory	Non-Volatile memory	
	definition	Memory required	Memory that will keep	Any 3point
		electrical power to keep	storing its information	(each 1
		information stored is	without the need of	mark)
		called volatile memory	electrical power is	
			called nonvolatile	
			memory.	
	classification	All RAMs	ROMs, EPROM,	1
			magnetic memories	
	Effect of power	Stored information	No effect of power	
		is retained only as	on stored	
		long as power is on.	information	
	applications	For temporary	For permanent	
	applications	storage	storage of	
		storage	information	
				4
	2. SRAM with DRAM m	nemory	7	
			1	
	Parameter	SRAM	DRAM	
	Parameter Circuit configuration	SRAMEach SRAM cell is	DRAM Each cell is one	
		Each SRAM cell is a flip flop		
		Each SRAM cell is	Each cell is one	
	Circuit configuration	Each SRAM cell is a flip flop	Each cell is one MOSFET & a capacitor	
	Circuit configuration	Each SRAM cell is a flip flop In the form of	Each cell is one MOSFET & a capacitor	
	Circuit configuration Bits stored	Each SRAM cell is a flip flop In the form of voltage	Each cell is one MOSFET & a capacitor In the form of charges	
	Circuit configuration Bits stored No of components per	Each SRAM cell is a flip flop In the form of voltage	Each cell is one MOSFET & a capacitor In the form of charges	
	Circuit configuration Bits stored No of components per cell	Each SRAM cell is a flip flop In the form of voltage More	Each cell is one MOSFET & a capacitor In the form of charges Less	
	Circuit configuration Bits stored No of components per cell Storage capacity	Each SRAM cell is a flip flop In the form of voltage More Less	Each cell is one MOSFET & a capacitor In the form of charges Less More	
	Circuit configuration Bits stored No of components per cell Storage capacity	Each SRAM cell is a flip flop In the form of voltage More Less It does not require	Each cell is one MOSFET & a capacitor In the form of charges Less More	
	Circuit configuration Bits stored No of components per cell Storage capacity Refreshing	Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing	Each cell is one MOSFET & a capacitor In the form of charges Less More It require refreshing.	

OUR CENTERS ·

